Stress-Assisted Reaction at a Solid-Fluid Interface

نویسنده

  • J. LIANG
چکیده

On the interface between a solid and a fluid, a reaction can occur in which atoms either leave the solid to join the fluid, or leave the fluid to join the solid. If the solid is in addition subject to a mechanical load, two outcomes may be expected. The reaction may proceed uniformly, so that the interface remains flat as the solid recedes or extends. Alternatively, the reaction may cause the interface to roughen and develop sharp cracks, leading to fracture. This paper reviews the current understanding of the subject. The solid-fluid is a thermodynamic system: the solid is in elastic equilibrium with the mechanical load, but not in chemical equilibrium with the fluid. Thermodynamic forces that drive the interfacial reaction include chemical energy difference between the solid and the fluid, elastic energy stored in the solid, and interfacial energy. The reaction is taken to be thermally activated. A kinetic law is adopted in which the stress affects both the activation energy and the driving force of the interface reaction. A linear perturbation analysis identifies the stability condition, which differs substantially from the well known stability condition based on the driving force alone. Large perturbations are examined by assuming that the interface varies as a family of cycloids, from slight waviness to sharp cracks. An analytic elasticity solution is used to compute the stress field in the solid, and a variational method to evolve the shape of the interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reflection and Transmission of Longitudinal Wave at Micropolar Viscoelastic Solid/Fluid Saturated Incompressible Porous Solid Interface

In this paper, the reflection and refraction of longitudinal wave from a plane surface separating a micropolar viscoelastic solid half space and a fluid saturated incompressible half space is studied. A longitudinal wave (P-wave) impinges obliquely at the interface. Amplitude ratios for various reflected and transmitted waves have been obtained. Then these amplitude ratios have been computed nu...

متن کامل

Elastic Wave Propagation at Imperfect Boundary of Micropolar Elastic Solid and Fluid Saturated Porous Solid Half-Space

This paper deals with the reflection and transmission of elastic waves from imperfect interface separating a micropolar elastic solid half-space and a fluid saturated porous solid half-space. Longitudinal and transverse waves impinge obliquely at the interface. Amplitude ratios of various reflected and transmitted waves are obtained and computed numerically for a specific model and results obta...

متن کامل

Propagation of Waves at an Interface of Heat Conducting Elastic Solid and Micropolar Fluid Media

The present investigation is concerned with the reflection and transmission coefficients of plane waves at the interface of generalized thermoelastic solid half space and heat conducting micropolar fluid half- space. The amplitude ratios of various reflected and transmitted waves with various angle of incidence have been computed numerically and depicted graphically. Micropolarity and thermal r...

متن کامل

Wave Propagation at the Boundary Surface of Inviscid Fluid Half-Space and Thermoelastic Diffusion Solid Half-Space with Dual-Phase-Lag Models

The present investigation deals  with the reflection and transmission phenomenon due to incident plane longitudinal wave at a plane interface between inviscid fluid half-space and a thermoelastic diffusion solid half-space with dual-phase-lag heat transfer (DPLT) and dual-phase-lag diffusion (DPLD) models. The theory of thermoelasticity with dual-phase-lag heat transfer developed by Roychoudhar...

متن کامل

تحلیل انتقال حرارت مزدوج در ناحیه طول ورودی

In this paper conjugated heat transfer in thermal entrance region through the sinusoidal wavy channel has been investigated. The fluid flow is assumed to be laminar, steady state, incompressible, and hydrodynamically fully developed. A constant heat flux is assumed to be applied on the outer edge of the channel wall. In this study the governing equations including continuity, momentum and energ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001